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STABILITY OF THE PARACHUTE

By H. BATEWN.

INTRODUCI’ION.

AND HRLIC03Xl!ER.

This paper was submitted to the National Advisory Committee for Aeronautics by
Professor EL Bateman, of the California Institute of Technology, and its publication duly
authorized by the committee as Technical Iteport No. 80.

The mathematical theory of the stability of a parachute which is sytumetrical with respectt
to a plane is very simiIar to the weILlmowmtheory of the stability of an airphme, but the values
of the resistance coefficients are naturally difl’erent. When the parachute does not rotate, it
may be compared with an airplane in a straight dive. There are osctiations corresponding to
the Longitudinal and lateral oscillations, and these are practically independent of one another.
Thus, when the parachute swings like a pendulum as it descends, we have an oscillation corre-
sponding to the pitching of an airpIane, while there is another type of oscillation which corre- —..
spends to the Dutch roll.

When the parachute is symmetrical about an axis, so that it has the form of a solid of rev-
olution, there may be no banking in the oscillation corrwponding to the Dutch roll, and the —.
oscillation then becomes a simple swing like the one which corresponds to the pitching of an
airplane. In this case a combination of two simple swings in perpendicular phmes may give rise
to a compound oscillation, which maybe likened to the motion of a conical pendulum falling

—..—.—

under gravity. In the general case the combination of the simple swing and Dutch roll gives
rise to a compound motion of a complicated character.

ANALYTICAL DISCUSSION.

To discuss the matt~ amd~ticdy we shall write down the equations of motion in the
notation used by G. H. Bryan* and S. Brodetsky.2 We shall take the tis of y M“axis of sym-
metry and assume that in the steady state the parachute is faLlingwith veIocity V in a vertical
direction, which coincidw with the axis of y, and is rotating with angular velocity Q around the
axis of y. This Iast assumption is made for the sake of generality, so as to cover the case of a
rotating solid of revolution and to obtain a condition corresponding to some extent with the case
of the helicopter where the Longitudinal and lateral oscillations are not independent. The
equations of motion may be written in the form

.

: p$y+(c!+dw-r(v+w)]= Wsine-x,

W dw
[ 1

~ ~+p(v+tbw+d ‘- Wcosdsin@-z,

~ d +A–Br ~Q+g)=_L

i?gtg
J

& dr+B–A
—Pci?+!z)=--wgag

~ dv
[ 1~~t+ML-pW=Tvc0sec0t34-Y,

Bcl ~
i~ t=– “
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Here W is the weight of the parachute and.passengerj X, Y, Z, L, M, N the camponent
air forces and couples referred to axes fixed in the.parachu@, B is the moment of inertia about
the axis of symmetry, A the moment of inertia about ~–prpe~~ctisr axie through the center
of gravity, both measured in gravitational units, U+ u, @,-”ti4_p,Q+ g, r are component velocities
and spins in the disturbed motion. To obtain the direc~ons of the axes in space in a disturbed
position of the parachuti we suppose the parachute rotated first about the @s of g (from z tuc)
through an angle ~, then about the axis of z (from z to y) through an angle 6; and finally about
the axis of z (ilom y to z) through an angle d,

.

Let us write u+iw=a, p+ir-b, @+itI=x where ~ denotes ~, then since u, w, p, r, 6,
and @ are small in a small oscillation and the parachute ia iymmetrica.1about. tha axis of y, wo
may write to a first approximation

dx
P=$jr=:i~=~

X +;Z.= aE+bF
L+ilV=aJ+6K

where the generalized resistance coatlicients E, F, J, K are complex quantities,
The above equations imply that if E= E, + iE2, etc., -- .— ---

X.-Z. ==El,
XP=Z, = F,,
Lu= NW= Ju.
~:: ;%10

.
Lvv=O,JLq~O, $

It is on account of these ratations that

Z.=– X.= E,,
Zp =–X, =F;;
NU=-l& =J2,
N,=–L. =~,
Z.=o, Zq=o,
Nv=o, N.-o.

the analysis for the symmetrical parachuts is
simpler than that for an airplane in a straight drive. If, in fact, we neglect squ&ws of small

quantities and use D ti denote the operatore $ the tit four equations may be written in the

form

Seeking a solution of the form a= aO@! x=X@ we obtain the period equation

[$(A-iQ) +E]~+(K+iQ~)A]-iJ [(~-@A+ w]=.. This is a cubic equation

with comphxc coefficients for the det&mination of. h. When Q = o it reduces to a cubic
equation with resl coaflicients for we have the relatiom Ea= o, F1= o, J1= o, & = o.

Remembering that in the generil cased .a rigid airplane the oscillations about a state
of steady motion are determined by an algebraic equation of the eighth de&e, we infer that,
in the present degenerate case our real cubicis a double factor of the octic and the periods and
decrements are the &e for ‘simple swings in two perpendicular planes through the axis of
spmetry of the parachute,

When Q = o a mat h =a +$ for which a is nsgative and B positive implies the existence
of a damped oscillation in which the center of gravity of the parachute describes a curve on a
vertical cylinder in such a way that it moves in a countercl@mke direction when the axes
are left handed, TO see this we notice that u + {W is Of: “b fgrrg

&%414) [~o~p(~) +~ ~ fj(~a)]

where R and ~ are real quantities. This equation indicates that ~ increasee with t and since

,
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the axis of z is to the left of the axis of z, the axis of y beingi~ownwards, this means that the
center of gravity moves on the cylinder in the counterclockwise direction.

The equation @+0 = XOe~”~@~implies that at the same time the axis of symmetry pre
cesses around the vertical in the counterclockwise direction. If we disregard theverticd motion
the character of the oscillation may be pictured by imagining a cone representing the para-
chute to partly roll and partly slide on the outside of another cone whose axis is verticaL

Let us call this a potitive owi.llution sad use the term negative oscillation to denote one
in which P is negative and the two motions take place in the cloclrwiae direction.

Either a positive or negative oscillation can be regarded as built up from two simple
swings in perpendicular planes, the two swings having the same period and damping time,
but dtiering in phase by a quarter period. By combining two such swings with an arbitrary
difference in phase a type of elliptic oscillation is obhiued.

It should be noticed than au umdmnpedpositive oscillation may correspond to a n~ t~e
of steady motion of the parachute. If such a motion exist it is characterized by v= o, g= o
and the fact that the cubic equation has two purely imaginary roots.

Thus cubic equation may be written in the form

P+yv+zwx+z=o
where

Let k’ -M +6 be a factor of the cubic, then a and 8 are determined by the equations

J&P-e +%y+x’w=o

–kd–ye+z-o.

With the aid of these equations we can plot the curves t= cmstat in the (z, g) plane.
since

(&+%y+aw) (y+%) =Z ‘

a curve t= constant (a= constant) is a hyperbola. Whena=o it reduces to x=o, y= $ and

this is a boundary of the region of stability in the (zjy) pkme. The wndition for uudamped
.

oscillations is, moreover, either x= o or y= ~s

The asymptotes of the hyperbola t= constant are

y+%?a=:and ,%y+xw+4a9+:=o

hencawhen d=-: wemusthave z=coy=cc. This means that we can not have a value of 8

which is smalIer than –~~ consequently when the time of damping is given the period p can

not be greater than a certain limiting value P.
If a be given it is clear that P increases with w and so it is desirable that w should be

XUN.
made as large as possible. This can be done either by making V large or by making X,–F –

u

negative and fairly large,
Now V is generally less than lg and ought not h be increased beyond this value, conse-

quently the most hopefuI method of improving the stability of the parachute is to make
x XUN,

r –— negative. It is probable that in the CsMhrop parachute this condition has beeniv.
secured.
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In Figure I the curves t=finstant have been drawn for two different values of w,
It will be scan that when .W= .W the time of damping t h generally greater thari the period.

.-

This is sometimes the case even when w =.6, but by choosing x and yin a suitable manner ihis
possible to make p greater than t. The importance of.a. ft&4y large value of w ia thus mahifest.
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In.&e study of the stability of the para-
chute, Brodets& treatmthe parachuta as. a
circular disk attached to a weighted sticli and .

finds fr~m a condition .equivalent toy> ~that

the ceder of gravity must lie betwwm certain
Iimita. The center of gravity must naturalJy
be fairly low, and there seems no way if
avoiding this except perhaps by attaching a
ring-shaped balloon to the rim of the disk.
The upii-ard thrust on “the balloon and the
downvmrd force through tho center of gra~ity r

would then have as-their rwmltant a fore.c
actihg through a point lowcr than the center

-.

of gravity, and thk point would art as tho
center of gravity of tho parachute in the
usual theory. Unless it could be combined
with a helicopter in some way, tho combi-
nation of a parachute and torwidal balloon
would be of theoretical interest only,

finning now to the case in which Q+ O,
we write

E= EO+Q (~+ti,) F=iFO+Q ~l+yl)

J=iJO+Q (jI+ij,) K= KO+Q C4i+W,)

The additional terms involving Q givo
the forces and couples arising from the Mag-
nua effeet or ita inveme’ and from related

phenomena? The cubic equation may ncnv be written in the form

~(l)s(J)+Q[(G+iH) J’+(I+iR)A–i wti, +In+@[ 1=0)
where

G= Ael+wki. . . _?_. _.. ______ . . .. _. . . .. .
9

..—-_ ____

To study the effect of rotation upon the oscillations let & al +i% al –@: be ~heorOOtS
of the equation .@(J)= o, 10and al being supposed negatilre and let U,+iro~ ml+trl~cz+ Irl! be
the quantities which must .be added W & ~1+ 4% al –“@~ res@Aii-ely, to give the correspond-
ing roote of the equation *(1)= o. If a and r are both positive it means that the Mec.t of
rotation is to diminish the period of a positive oscillation and to increase the time of damping t“

-.. .- _.= _.&

ZFor the tied rd.sidWipons proprdlere$athe Teohoicsl Report-sd the Britfah Advisory CommMee Ior Aemnmtlrs 191$!48, 101S-14,
and 1918.
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The effect on a negative oscillation is to increase both the period and the time of damping.
The effect on a simple subsidence is to make it periodic and increase the time of damping.
The effect of rotation when u and r are not both positive is easily inferred.

In order that u,, u,, u, may all be negative and the damping times for the three disturb-
ances associated with & al+ i131,al – @, all increased, it is necessary, but not sufficient, that
Q@, QI, and Qj2should all be positive. Now N.= JO+Qj2, hence it is necessary in the first
place that the effect of the rotation should be to increase N.. The effect on the period is of . .-
some interest because in generaI the single period and time of damping associated with the
two conjugate roots cq+i#i and ~ –if?,, will give rise to two different periods and two different
times of damping; also a new positive or negative oscillation with a long period will arise from
the simple subsidence associated with the root 1.. The phenomenon of the division of one
period into two @ somewhat analogous ta that which occurs in the Zeeman effect, especially
as we may have a compound oedlation buiIt up from positive and negative circular osciUa-
tione of nearly equal period. The curves in Figure II give the horizontal projection of the
path of the center of gravity of the parachute or helicopter ti two Pathh Ca= of com-
pound oscillations of tie abo~e type. ‘ti the
first case the two component circular oscilla-
tions are undamped, in the second case they
are both damped, the rata of subsidence being
the same in each case. A complete discus-
sion of the effect of rotation on stability is
out of the question at present owing to our
lack of knowledge of the values of the various
resistance coefficients, but it may be worth
while to ascertain the conditiom for stability
by iimling the conditions that a cubic equa-
tion with complex coefficients may have roots
whose real parts are all negative.

T& condIii.ion8that a cubic equation with
its roots neaaihe.

In& IL

complex coej%ien$a may have theTeal parts of a?l

The ~ethod given by E. J. Routh’ for finding the conditions that an algebraic equation
with real coefficients may have the reaI parts of all its roots negative may be extended to the
cme of an equation with complex coefficients.

Let us consider the case of the cubic

Let al- xl+ & %= ~ +iyzj %=% +iy*, and let the equation whose roota are –xl +iyl,
- ~ +iy2, - ~ +iy*, be .-

($+PI) (Z+l%) (z+&) =+ P&+ Qx+R”.

In Routh’s method the tit step k to fits iy for z and h separate the real and imaginary
parti of the cubic, thus obtaining two exprmsione

--

@+ P,@–QY-%=i(I/)

PI??+ !W-TI=&(Y) --

The process of finding the greatest co~on me~we offl (Y) mdf, (y) must now be carried
out, the sign of the remakder be% ch~ged at e~h stip j~t ss k Sturm’s theorem. h this
way we obtain a series of polynomifi wh- fit coticients are



respectively where
E =p,p& – gas- p,rl +P1’ql

I=p1+2+?M – r&P~.

In order thatr.q, ~, and ~ may all be positive .it is nemmry and sufficient that p,, H,
and K shouId all be positive. The quantity K becomes zero when any one of the quantities
Zl, ~, ~ becomes zero, it corresponds, therefore, to Eouth’s discriminant in the case of the
real quartic. In teimii of “+, %, %, y,, y,, Y,, the mprwsiom for H ~d K are’

H =AX2q +Bx8z, + @%,
lYK=.zlqz, ~w– (W-nA) (mA –?23)– (nzA-U3) (nB-mO) – (rd3-mC) CC–ml)]

B=(Z, +ZJ (2%+%+%)+ (YS–Y,)’,

c=(% + %) (%0+% +%)+ (YI –Y2)2,

l=q(Y2–Y8)) ~=q(y,–yl)) n=% (Y1–yi).

It is not evident from these expression that x,, x,, and z, are positive when p,, H, and K
me positive; ~ also W K is of the eleventh degree in the cpntities ZI, zj, %, yl, Ya,YS,and is not
the simplest function of the coefficients which becomw ~o when. one-f. the quantitim xl, +,
~ is zero; consequently it will be worth while to find an alternative set of conditions which
will make q ~, and Zgpositive.

Let us consider thesprwsions

To=(al +&) (a, +/3) (q +/3,) (%+13) (%+1%)(%+A) (%+&) (se+/%) (%+&)
=w~w [(%+ze)’+(yz-yg)ll [(%+%)2+(%-WI [(%+%) *+(Y, -WI,

S=[(q+/fI,) (a#+P,) + (% +6,) (al +/%)+ (al+&) (%+ MIX

[(%+Pa) G%+f%) + (%+81) (% +fu + (al +m (%-+ I%)IX

[k% +1%) (f%+Pa) + (% +A) (%+58)+ (al +80) (%+PI)I
=4[z#, +x#, +z&] [{% +%+ UYZ-?JJ} {%+”% +uY&-Yl)}

+{%+% +W8-YJ} {%+%+ ~(Y1-!/J} +{(%+%) +~(Y1–?/J} {%+%+ ~(?/z–Ys)}lx

[{(%+%) –~(Y1–%)} {%+%–~(Y2–Y8)} +{%+% –~(Yz–Y3)} {%+%-i(ys-y,)} +

{%+%-~ (Y8–YI)} {%+% -~(Yi-Y2)}l,
S’=[(%+P2) Q%+l%)+ (%+1%) (al+l%) + (%+1%) (%+/%11x

[(%+68) (%+M +(%+62) (%+s1) +(al+fil) (%+/%)1 x
[(% +Pl) (% +%)+ (%+8s) (% +62)+(% +/%) (% +1%)]

~4zJz, +zJ + (z,+%)’+ (%-m [4K(%+%) -f@z+%)z+ (Y2-YJZI x

[4z&+%) + (%+ %)’+ (Y1–YM

pi=%+%+%.

It will be noticed that the second ~d third factors of S we conjugati compkx quantities
and so their product is a positive quantity. If k“ clem- theri that if p,, S, and T are all pos-
itive, the quantities

%+%+%, %%+%%+%%, %%4

are aU positive.* NOWlet xl, ~, and % be regarded w the dhtancea of a point from the sides
of an equilateral triangle. This is legitimate since ~ + ~ + ~ is positive. Keeping this
last quantity constant a pokt cm be Wed to reprment auy possible set of values of A, X2,and
~ whose sum has this constant value.

Now when %Za+“- + zl~” k positive the reprwentative petit ~w wii%.u the circum-
scribing circle of the trhmgh ~d wh~ Z+IAXSis positive the represmtative point lies within

-..
lSeanote L
I h the ease of the quedmtio a-%+% H-WI K%+%)%W-PNI-PIIM-%%11%. w~ PI ad H em PcWve it is evfdenttiwt ZI+M

and zw m both pOdtfVO old tit W.WWDtb ZIfdld@ W8 PCtiftiV8.
sWhau thfse qtities em W WKMIV8@ b alsoPO?MVfh
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one of the four regions bounded by lines making an aoute m$ijlewith one another. It is clear
then that when %+% +x,, %z2+%%+%% ~d zl%z, are all positive the representative point
must lie within the triangle and ~, ~, ~, be all positive.

To express S s.nd 1’ in terms of the ooeflicients we notice that if two of the quantities
~j %, ~ me ~~rch~ged> or if two of the qu~~~= &7 I%,I% me in*~angedJ S iS ~--
formed inta N. Hence we are justified in assuming that there is an identity of type

t!-@=?cA
where

A = (a,–%) (%–cc,) c%–%) @,–/%) (&–1%) @,–~,)

Comparing coefficients we find that k= -1.
Writing. S in the form

.

where
u=(@,+%!3,+48)(%JZ+%/3+%%)(%/%+%/%+%/%)

.- —
we resume that

– U+ ~A =ArR +B(rPQ +Rpq) + O(TP’+I@’) + DPQpq+ EpW + F(p’PQ + P’pg) “

Determining the unknown coeilicients by putting

(1] a’=o, &=o,
(2) /32=% l%=%

—

(3) %-%2 91=02

(4) B1=62 =1%,

we find that

A=-%, B=;~ C=–1~ D=-;~ E=o, F=O.

Hence finally

A’= (p’q’ – 4p%+ 18pqr - 4f – 27P) (P2Q’–4F’R+ MPQR-4Q’ –27R’)

Writing Tin the form

T= (q’+ Pq2+Qq+R) (q’+pq’+Qaz+R) (q8+%a+QCY.a+R)

we wily find that
.

T=@ + R’ + Pr’q+ pR’Q +Qrq’ + qRQ’– 2Qpr’–2qPR’ i-31W+ 3B2r+ Rgs+rQg –3Rpgr –3rPQR
+P’pr’ + p2PR’ + Par’+ p’R’ + PQpqr + pqPQR + P’Qqr + p’qQR + PQ’pr + pq’PR +P’Rg’

—.

+p;rQ2–2P2RPT– v’TPB – WPQ –3B2pq– QRpr – grPR – 2q’QR –2Q2qr.

o


